Vector valued multivariate spectral multipliers, Littlewood-Paley functions, and Sobolev spaces in hte Hermite setting

Autor: Betancor, J. J., Fariña, J. C., Ssnabria, A.
Rok vydání: 2013
Předmět:
Druh dokumentu: Working Paper
Popis: In this paper we find new equivalent norms in $L^p(\mathbb{R}^n,\mathbb{B})$ by using multivariate Littlewood-Paley functions associated with Poisson semigroup for the Hermite operator, provided that $\mathbb{B}$ is a UMD Banach space with the property ($\alpha$). We make use of $\gamma$-radonifying operators to get new equivalent norms that allow us to obtain $L^p(\mathbb{R}^n,\mathbb{B})$-boundedness properties for (vector valued) multivariate spectral multipliers for Hermite operators. As application of this Hermite multiplier theorem we prove that the Banach valued Hermite Sobolev and potential spaces coincide.
Databáze: arXiv