Autor: |
Betancor, J. J., Fariña, J. C., Ssnabria, A. |
Rok vydání: |
2013 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
Popis: |
In this paper we find new equivalent norms in $L^p(\mathbb{R}^n,\mathbb{B})$ by using multivariate Littlewood-Paley functions associated with Poisson semigroup for the Hermite operator, provided that $\mathbb{B}$ is a UMD Banach space with the property ($\alpha$). We make use of $\gamma$-radonifying operators to get new equivalent norms that allow us to obtain $L^p(\mathbb{R}^n,\mathbb{B})$-boundedness properties for (vector valued) multivariate spectral multipliers for Hermite operators. As application of this Hermite multiplier theorem we prove that the Banach valued Hermite Sobolev and potential spaces coincide. |
Databáze: |
arXiv |
Externí odkaz: |
|