A compactness theorem in Finsler geometry
Autor: | Anastasiei, Mihai, Peter, Ioan Radu |
---|---|
Rok vydání: | 2013 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let (M.F) be a complete Finsler manifold and P be a minimal and compact submanifold of M. Ric_k(x), x in M is a differential invariant that interpolates between the flag curvature and the Ricci curvature. We prove that if on any geodesic c(t) emanating orthogonally from P we have \int_{0}^{\infty}\mathbf{Ric}_{k}(t)>0, then M is compact. Comment: 12 pages, no figures |
Databáze: | arXiv |
Externí odkaz: |