A compactness theorem in Finsler geometry

Autor: Anastasiei, Mihai, Peter, Ioan Radu
Rok vydání: 2013
Předmět:
Druh dokumentu: Working Paper
Popis: Let (M.F) be a complete Finsler manifold and P be a minimal and compact submanifold of M. Ric_k(x), x in M is a differential invariant that interpolates between the flag curvature and the Ricci curvature. We prove that if on any geodesic c(t) emanating orthogonally from P we have \int_{0}^{\infty}\mathbf{Ric}_{k}(t)>0, then M is compact.
Comment: 12 pages, no figures
Databáze: arXiv