Antihydrogen $(\bar{\rm{H}})$ and muonic antihydrogen $(\bar{\rm{H}}_{\mu})$ formation in low energy three-charge-particle collisions

Autor: Sultanov, Renat A., Guster, D.
Rok vydání: 2013
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1088/0953-4075/46/21/215204
Popis: A few-body formalism is applied for computation of two different three-charge-particle systems. The first system is a collision of a slow antiproton, $\bar{\rm{p}}$, with a positronium atom: Ps$=(e^+e^-)$ $-$ a bound state of an electron and a positron. The second problem is a collision of $\bar{\rm{p}}$ with a muonic muonium atom, i.e. true muonium $-$ a bound state of two muons one positive and one negative: Ps$_{\mu}=(\mu^+\mu^-)$. The total cross section of the following two reactions: $\bar{\rm p}+(e^+e^-) \rightarrow \bar{\rm{H}} + e^-$ and $\bar{\rm p}+(\mu^+\mu^-) \rightarrow \bar{\rm{H}}_{\mu} + \mu^-$, where $\bar{\rm{H}}=(\bar{\rm p}e^+)$ is antihydrogen and $\bar{\rm{H}}_{\mu}=(\bar{\rm p}\mu^+)$ is a muonic antihydrogen atom, i.e. a bound state of $\bar{\rm{p}}$ and $\mu^+$, are computed in the framework of a set of coupled two-component Faddeev-Hahn-type (FH-type) equations. Unlike the original Faddeev approach the FH-type equations are formulated in terms of only two but relevant components: $\Psi_1$ and $\Psi_2$, of the system's three-body wave function $\Psi$, where $\Psi=\Psi_1+\Psi_2$. In order to solve the FH-type equations $\Psi_1$ is expanded in terms of the input channel target eigenfunctions, i.e. in this work in terms of, for example, the $(\mu^+\mu^-)$ atom eigenfunctions. At the same time $\Psi_2$ is expanded in terms of the output channel two-body wave functions, that is in terms of $\bar{\rm{H}}_{\mu}$ atom eigenfunctions.
Comment: 32 pages (preprint), 2 tables, and 9 figures
Databáze: arXiv