The Generalized Fibonacci and Lucas Solutions of The Pell Equations x^2-(a^2b^2-b)y^2=N and x^2-(a^2b^2-2b)y^2=N
Autor: | Peker, Bilge, Senay, Hasan |
---|---|
Rok vydání: | 2013 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In this study, we find continued fraction expansion of sqrt(d) when d=a^2b^2-b and d=a^2b^2-2b where a and b are positive integers. We consider the integer solutions of the Pell equations x^2-(a^2b^2-b)y^2=N and x^2-(a^2b^2-2b)y^2=N when N is {+-1,+-4}. We formulate the n-th solution (x_{n},y_{n}) by using the continued fraction expansion. We also formulate the n-th solution (x_{n},y_{n}) in terms of generalized Fibonacci and Lucas sequences. Comment: 8 pages |
Databáze: | arXiv |
Externí odkaz: |