The Generalized Fibonacci and Lucas Solutions of The Pell Equations x^2-(a^2b^2-b)y^2=N and x^2-(a^2b^2-2b)y^2=N

Autor: Peker, Bilge, Senay, Hasan
Rok vydání: 2013
Předmět:
Druh dokumentu: Working Paper
Popis: In this study, we find continued fraction expansion of sqrt(d) when d=a^2b^2-b and d=a^2b^2-2b where a and b are positive integers. We consider the integer solutions of the Pell equations x^2-(a^2b^2-b)y^2=N and x^2-(a^2b^2-2b)y^2=N when N is {+-1,+-4}. We formulate the n-th solution (x_{n},y_{n}) by using the continued fraction expansion. We also formulate the n-th solution (x_{n},y_{n}) in terms of generalized Fibonacci and Lucas sequences.
Comment: 8 pages
Databáze: arXiv