Maximal abelian subalgebras of the group factor of an $\widetilde A_2$ group

Autor: Robertson, Guyan, Steger, Tim
Rok vydání: 2013
Předmět:
Zdroj: J. Operator Theory 36 (1996), 317--334
Druh dokumentu: Working Paper
Popis: An $\widetilde A_2$ group $\Gamma$ acts simply transitively on the vertices of an affine building $\triangle$. We study certain subgroups $\Gamma_0 \cong {\Bbb Z}^2$ which act on certain apartments of $\triangle$. If one of these subgroups acts simply transitively on an apartment, then the corresponding subalgebra of the group von Neumann algebra is maximal abelian and singular. Moreover the Puk\'anszky invariant contains a type $I_{\infty}$ summand.
Databáze: arXiv