Autor: |
Robertson, Guyan, Steger, Tim |
Rok vydání: |
2013 |
Předmět: |
|
Zdroj: |
J. Combin. Theory Ser. A, 103 (2003), 91-104 |
Druh dokumentu: |
Working Paper |
Popis: |
Let $\Gamma$ be a group of type rotating automorphisms of a building $\cB$ of type $\widetilde A_2$, and suppose that $\Gamma$ acts freely and transitively on the vertex set of $\cB$. The apartments of $\cB$ are tiled by triangles, labelled according to $\Gamma$-orbits. Associated with these tilings there is a natural subshift of finite type, which is shown to be irreducible. The key element in the proof is a combinatorial result about finite projective planes. |
Databáze: |
arXiv |
Externí odkaz: |
|