Importance of both spin and orbital fluctuations in BaFe2(As1-xPx)2 : Evidence from superconducting gap anisotropy

Autor: Yoshida, T., Ideta, S., Shimojima, T., Malaeb, W., Shinada, K., Suzuki, H., Nishi, I., Fujimori, A., Ishizaka, K., Shin, S., Nakashima, Y., Anzai, H., Arita, M., Ino, A., Namatame, H., Taniguchi, M., Kumigashira, H., Ono, K., Kasahara, S., Shibauchi, T., Terashima, T., Matsuda, Y., Nakajima, M., Uchida, S., Tomioka, Y., Ito, T., Kihou, K., Lee, C. H., Iyo, A., Eisaki, H., Ikeda, H., Arita, R., Saito, T., Onari, S., Kontani, H.
Rok vydání: 2013
Předmět:
Zdroj: Sci. Rep. 4, 7292 (2014)
Druh dokumentu: Working Paper
Popis: In the iron pnictide superconductors, two distinct unconventional mechanisms of superconductivity have been put forth: One is mediated by spin fluctuations leading to the s+- state with sign change of superconducting gap between the hole and electron bands, and the other is orbital fluctuations which favor the s++ state without sign reversal. Here we report direct observation of peculiar momentum-dependent anisotropy in the superconducting gap from angle-resolved photoemission spectroscopy (ARPES) in BaFe2(As1-xPx)2 (Tc=30 K). The large anisotropy found only in the electron Fermi surface (FS) and the nearly isotropic gap on the entire hole FSs are together consistent with modified s+- gap with nodal loops, which can be theoretically reproduced by considering both spin and orbital fluctuations whose competition generates the gap modulation. This indicates that these two fluctuations are nearly equally important to the high-Tc superconductivity in this system.
Databáze: arXiv