On Quantization, the Generalized Schr\'odinger Equation and Classical Mechanics
Autor: | Jones, K. R. W. |
---|---|
Rok vydání: | 2012 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Using a new state-dependent, $\lambda$-deformable, linear functional operator, ${\cal Q}_{\psi}^{\lambda}$, which presents a natural $C^{\infty}$ deformation of quantization, we obtain a uniquely selected non--linear, integro--differential Generalized Schr\"odinger equation. The case ${\cal Q}_{\psi}^{1}$ reproduces linear quantum mechanics, whereas ${\cal Q}_{\psi}^{0}$ admits an exact dynamic, energetic and measurement theoretic {\em reproduction} of classical mechanics. All solutions to the resulting classical wave equation are given and we show that functionally chaotic dynamics exists. Comment: 8 pages |
Databáze: | arXiv |
Externí odkaz: |