Autor: |
Paul, Kallol, Sain, Debmalya, Jha, Kanhaiya |
Rok vydání: |
2012 |
Předmět: |
|
Zdroj: |
J. Inequal. Appl., 2013 (242), (2013) |
Druh dokumentu: |
Working Paper |
DOI: |
10.1186/1029-242X-2013-242 |
Popis: |
We introduce the notion of strongly orthogonal set relative to an element in the sense of Birkhoff-James in a normed linear space to find a necessary and sufficient condition for an element $ x $ of the unit sphere $ S_{X}$ to be an exposed point of the unit ball $ B_X .$ We then prove that a normed linear space is strictly convex iff for each element x of the unit sphere there exists a bounded linear operator A on X which attains its norm only at the points of the form $ \lambda x $ with $ \lambda \in S_{K} $. |
Databáze: |
arXiv |
Externí odkaz: |
|