Finiteness of the total first curvature of a non-closed curve in $\mathbb{E}^{n}$

Autor: Kim, C. Y., Matsuda, H., Park, J. H., Yorozu, S.
Rok vydání: 2012
Předmět:
Druh dokumentu: Working Paper
Popis: We consider a regular smooth curve in $\mathbb{E}^n$ such that its coordinates' components are the fundamental solutions of the differential equation $ y^{(n)} (x) - y(x) = 0 ,$ $x \in \mathbb{R} $ of order $n$. We show that the total first curvature of this curve is infinite for odd $n$ and is finite for even $n$.
Comment: 22 pages
Databáze: arXiv