Finiteness of the total first curvature of a non-closed curve in $\mathbb{E}^{n}$
Autor: | Kim, C. Y., Matsuda, H., Park, J. H., Yorozu, S. |
---|---|
Rok vydání: | 2012 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We consider a regular smooth curve in $\mathbb{E}^n$ such that its coordinates' components are the fundamental solutions of the differential equation $ y^{(n)} (x) - y(x) = 0 ,$ $x \in \mathbb{R} $ of order $n$. We show that the total first curvature of this curve is infinite for odd $n$ and is finite for even $n$. Comment: 22 pages |
Databáze: | arXiv |
Externí odkaz: |