Symplectic modules over Colombeau-generalized numbers

Autor: Konjik, Sanja, Hoermann, Guenther, Kunzinger, Michael
Rok vydání: 2012
Předmět:
Zdroj: Comm. Algebra 42: 3358-3577, 2014
Druh dokumentu: Working Paper
Popis: We study symplectic linear algebra over the ring $\Rt$ of Colombeau generalized numbers. Due to the algebraic properties of $\Rt$ it is possible to preserve a number of central results of classical symplectic linear algebra. In particular, we construct symplectic bases for any symplectic form on a free $\Rt$-module of finite rank. Further, we consider the general problem of eigenvalues for matrices over $\Kt$ ($\K=\R$ or $\C$) and derive normal forms for Hermitian and skew-symmetric matrices. Our investigations are motivated by applications in non-smooth symplectic geometry and the theory of Fourier integral operators with non-smooth symbols.
Comment: Some typos corrected, proof of Th. 3.3 corrected
Databáze: arXiv