Cardy-Frobenius extension of algebra of cut-and-join operators
Autor: | Mironov, A., Morozov, A., Natanzon, S. |
---|---|
Rok vydání: | 2012 |
Předmět: | |
Zdroj: | Journal of Geometry and Physics, 73 (2013) 243-251 |
Druh dokumentu: | Working Paper |
DOI: | 10.1016/j.geomphys.2013.06.007 |
Popis: | Motivated by the algebraic open-closed string models, we introduce and discuss an infinite-dimensional counterpart of the open-closed Hurwitz theory describing branching coverings generated both by the compact oriented surfaces and by the foam surfaces. We manifestly construct the corresponding infinite-dimensional equipped Cardy-Frobenius algebra, with the closed and open sectors are represented by conjugation classes of permutations and the pairs of permutations, i.e. by the algebra of Young diagrams and bipartite graphes respectively. Comment: 12 pages |
Databáze: | arXiv |
Externí odkaz: |