A Nullstellensatz for \L ojasiewicz ideals
Autor: | Acquistapace, Francesca, Broglia, Fabrizio, Nicoara, Andreea |
---|---|
Rok vydání: | 2012 |
Předmět: | |
Zdroj: | Rev. Mat. Iberoam. 30 (2014), no. 4, 1479-1487 |
Druh dokumentu: | Working Paper |
DOI: | 10.4171/RMI/822 |
Popis: | For an ideal of smooth functions that is either {\L}ojasiewicz or weakly {\L}ojasiewicz, we give a complete characterization of the ideal of functions vanishing on its variety in terms of the global {\L}ojasiewicz radical and Whitney closure. We also prove that the {\L}ojasiewicz radical of such an ideal is analytic-like in the sense that its saturation equals its Whitney closure. This allows us to recover in a different way Nullstellensatz results due to Bochnak and Adkins-Leahy and answer positively a modification of the Nullstellensatz conjecture due to Bochnak. Comment: 9 pages |
Databáze: | arXiv |
Externí odkaz: |