Survival of the Scarcer
Druh dokumentu: | Working Paper |
---|---|
DOI: | 10.1103/PhysRevE.87.010101 |
Přístupová URL adresa: | http://arxiv.org/abs/1210.0018 |
Přírůstkové číslo: | edsarx.1210.0018 |
Autor: | Gabel, Alan, Meerson, Baruch, Redner, S. |
Rok vydání: | 2012 |
Předmět: | |
Zdroj: | Phys. Rev. E. (Rapid Communication) 87, 010101 (2013) |
Druh dokumentu: | Working Paper |
DOI: | 10.1103/PhysRevE.87.010101 |
Popis: | We investigate extinction dynamics in the paradigmatic model of two competing species A and B that reproduce (A-->2A, B-->2B), self-regulate by annihilation (2A-->0, 2B-->0), and compete (A+B-->A, A+B-->B). For a finite system that is in the well-mixed limit, a quasi-stationary state arises which describes coexistence of the two species. Because of discrete noise, both species eventually become extinct in time that is exponentially long in the quasi-stationary population size. For a sizable range of asymmetries in the growth and competition rates, the paradoxical situation arises in which the numerically disadvantaged species according to the deterministic rate equations survives much longer. Comment: 5 pages, 2-column revtex4-1 format; current revision has stylistic changes in response to referees, for publication in PRE Rapid Communications |
Databáze: | arXiv |
Externí odkaz: |