On the real polynomial Bohnenblust-Hille inequality
Autor: | Campos, J. R., Jiménez-Rodríguez, P., Muñoz-Fernández, G. A., Pellegrino, D., Seoane-Sepúlveda, J. B. |
---|---|
Rok vydání: | 2012 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | It was recently proved by Bayart et al. that the complex polynomial Bohnenblust--Hille inequality is subexponential. We show that, for real scalars, this does no longer hold. Moreover, we show that, if $D_{\mathbb{R},m}$ stands for the real Bohnenblust--Hille constant for $m$-homogeneous polynomials, then $\displaystyle\lim\sup_{m}D_{\mathbb{R},m}^{1/m}=2.$ Comment: 7 pages; Replaced to an improved version due to some recent advances |
Databáze: | arXiv |
Externí odkaz: |