Autor: |
Alonso-Gutiérrez, David, Bastero, Jesús |
Rok vydání: |
2012 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
Popis: |
We show that any random vector uniformly distributed on any hyperplane projection of $B_1^n$ or $B_\infty^n$ verifies the variance conjecture $$\text{Var}|X|^2\leq C\sup_{\xi\in S^{n-1}}\E^2\E|X|^2.$$ Furthermore, a random vector uniformly distributed on a hyperplane projection of $B_\infty^n$ verifies a negative square correlation property and consequently any of its linear images verifies the variance conjecture. |
Databáze: |
arXiv |
Externí odkaz: |
|