Spectral theory of a mathematical model in Quantum Field Theory for any spin
Autor: | Guillot, Jean-Claude |
---|---|
Rok vydání: | 2012 |
Předmět: | |
Zdroj: | Contemporary Mathematics, vol 640, 13-37, 2015 |
Druh dokumentu: | Working Paper |
Popis: | In this paper we use the formalism of S.Weinberg in order to construct a mathematical model based on the weak decay of hadrons and nuclei. In particular we consider a model which generalizes the weak decay of the nucleus of the cobalt. We associate with this model a Hamiltonian with cutoffs in a Fock space. The Hamiltonian is self-adjoint and has an unique ground state. By using the commutator theory we get a limiting absorption principle from which we deduce that the spectrum of the Hamiltonian is absolutely continuous above the energy of the ground state and below the first threshold. Comment: A subsection revised |
Databáze: | arXiv |
Externí odkaz: |