Stably free modules over virtually free groups
Autor: | O'Shea, Seamus |
---|---|
Rok vydání: | 2012 |
Předmět: | |
Zdroj: | S. O'Shea, Arch. Math. (2012) |
Druh dokumentu: | Working Paper |
DOI: | 10.1007/s00013-012-0432-9 |
Popis: | Let $F_m$ be the free group on $m$ generators and let $G$ be a finite nilpotent group of non square-free order; we show that for each $m\ge 2$ the integral group ring ${\bf Z}[G\times F_m]$ has infinitely many stably free modules of rank 1. Comment: 9 pages. The final publication is available at http://www.springerlink.com doi:10.1007/s00013-012-0432-9 |
Databáze: | arXiv |
Externí odkaz: |