Stably free modules over virtually free groups

Autor: O'Shea, Seamus
Rok vydání: 2012
Předmět:
Zdroj: S. O'Shea, Arch. Math. (2012)
Druh dokumentu: Working Paper
DOI: 10.1007/s00013-012-0432-9
Popis: Let $F_m$ be the free group on $m$ generators and let $G$ be a finite nilpotent group of non square-free order; we show that for each $m\ge 2$ the integral group ring ${\bf Z}[G\times F_m]$ has infinitely many stably free modules of rank 1.
Comment: 9 pages. The final publication is available at http://www.springerlink.com doi:10.1007/s00013-012-0432-9
Databáze: arXiv