Global $L^{p}$ estimates for degenerate Ornstein-Uhlenbeck operators with variable coefficients

Autor: Bramanti, Marco, Cupini, Giovanni, Lanconelli, Ermanno, Priola, Enrico
Rok vydání: 2012
Předmět:
Druh dokumentu: Working Paper
Popis: We consider a class of degenerate Ornstein-Uhlenbeck operators in $\mathbb{R}^{N}$, of the kind [\mathcal{A}\equiv\sum_{i,j=1}^{p_{0}}a_{ij}(x) \partial_{x_{i}x_{j}}^{2}+\sum_{i,j=1}^{N}b_{ij}x_{i}\partial_{x_{j}}%] where $(a_{ij})$ is symmetric uniformly positive definite on $\mathbb{R}^{p_{0}}$ ($p_{0}\leq N$), with uniformly continuous and bounded entries, and $(b_{ij})$ is a constant matrix such that the frozen operator $\mathcal{A}_{x_{0}}$ corresponding to $a_{ij}(x_{0})$ is hypoelliptic. For this class of operators we prove global $L^{p}$ estimates ($1
Databáze: arXiv