Universal deformation rings of modules for algebras of dihedral type of polynomial growth

Autor: Bleher, Frauke M., Talbott, Shannon N.
Rok vydání: 2012
Předmět:
Zdroj: Alg. Represent. Theory 17 (2014), 289-303
Druh dokumentu: Working Paper
DOI: 10.1007/s10468-012-9399-2
Popis: Let k be an algebraically closed field, and let \Lambda\ be an algebra of dihedral type of polynomial growth as classified by Erdmann and Skowro\'{n}ski. We describe all finitely generated \Lambda-modules V whose stable endomorphism rings are isomorphic to k and determine their universal deformation rings R(\Lambda,V). We prove that only three isomorphism types occur for R(\Lambda,V): k, k[[t]]/(t^2) and k[[t]].
Comment: 11 pages, 2 figures
Databáze: arXiv