Universal deformation rings of modules for algebras of dihedral type of polynomial growth
Autor: | Bleher, Frauke M., Talbott, Shannon N. |
---|---|
Rok vydání: | 2012 |
Předmět: | |
Zdroj: | Alg. Represent. Theory 17 (2014), 289-303 |
Druh dokumentu: | Working Paper |
DOI: | 10.1007/s10468-012-9399-2 |
Popis: | Let k be an algebraically closed field, and let \Lambda\ be an algebra of dihedral type of polynomial growth as classified by Erdmann and Skowro\'{n}ski. We describe all finitely generated \Lambda-modules V whose stable endomorphism rings are isomorphic to k and determine their universal deformation rings R(\Lambda,V). We prove that only three isomorphism types occur for R(\Lambda,V): k, k[[t]]/(t^2) and k[[t]]. Comment: 11 pages, 2 figures |
Databáze: | arXiv |
Externí odkaz: |