Emergence of a non trivial fluctuating phase in the XY model on regular networks

Autor: De Nigris, Sarah, Leoncini, Xavier
Rok vydání: 2012
Předmět:
Zdroj: EPL 101 (2013) 10002
Druh dokumentu: Working Paper
DOI: 10.1209/0295-5075/101/10002
Popis: We study an XY-rotor model on regular one dimensional lattices by varying the number of neighbours. The parameter $2\ge\gamma\ge1$ is defined. $\gamma=2$ corresponds to mean field and $\gamma=1$ to nearest neighbours coupling. We find that for $\gamma<1.5$ the system does not exhibit a phase transition, while for $\gamma > 1.5$ the mean field second order transition is recovered. For the critical value $\gamma=\gamma_c=1.5$, the systems can be in a non trivial fluctuating phase for whichthe magnetisation shows important fluctuations in a given temperature range, implying an infinite susceptibility. For all values of $\gamma$ the magnetisation is computed analytically in the low temperatures range and the magnetised versus non-magnetised state which depends on the value of $\gamma$ is recovered, confirming the critical value $\gamma_{c}=1.5$.
Databáze: arXiv