Herschel/PACS observations of young sources in Taurus: the far-infrared counterpart of optical jets
Autor: | Podio, L., Kamp, I., Flower, D., Howard, C., Sandell, G., Mora, A., Aresu, G., Brittain, S., Dent, W. F. R., Pinte, C., White, G. J. |
---|---|
Rok vydání: | 2012 |
Předmět: | |
Druh dokumentu: | Working Paper |
DOI: | 10.1051/0004-6361/201219475 |
Popis: | Observations of the atomic and molecular line emission associated with jets and outflows emitted by young stellar objects can be used to trace the various evolutionary stages they pass through as they evolve to become main sequence stars. To understand the relevance of atomic and molecular cooling in shocks, and how accretion and ejection efficiency evolves with the source evolutionary state, we will study the far-infrared counterparts of bright optical jets associated with Class I and II sources in Taurus (T Tau, DG Tau A, DG Tau B, FS Tau A+B, and RW Aur). We have analysed Herschel/PACS observations of a number of atomic ([OI]63um, 145um, [CII]158um) and molecular (high-J CO, H2O, OH) lines, collected within the OTKP GASPS. To constrain the origin of the detected lines we have compared the FIR emission maps with the emission from optical-jets and millimetre-outflows, and the line fluxes and ratios with predictions from shock and disk models. All of the targets are associated with extended emission in the atomic lines correlated with the direction of the optical jet/mm-outflow. The atomic lines can be excited in fast dissociative J-shocks. The molecular emission, on the contrary, originates from a compact region, that is spatially and spectrally unresolved. Slow C- or J- shocks with high pre-shock densities reproduce the observed H2O and high-J CO lines; however, the disk and/or UV-heated outflow cavities may contribute to the emission. While the cooling is dominated by CO and H2O lines in Class 0 sources, [OI] becomes an important coolant as the source evolves and the environment is cleared. The cooling and mass loss rates estimated for Class II and I sources are one to four orders of magnitude lower than for Class 0 sources. This provides strong evidence to indicate that the outflow activity decreases as the source evolves. Comment: 18 pages, 9 figures, accepted by A&A |
Databáze: | arXiv |
Externí odkaz: |