On the Selberg integral of the three-divisor function $d_3$

Autor: Coppola, Giovanni
Rok vydání: 2012
Předmět:
Druh dokumentu: Working Paper
Popis: We give a new non-trivial upper bound for the Selberg integral of the three-divisor function $d_3(n)$. Our method applies our recent conjecture together with Laporta, for the modified Selberg integral of $d_3(n)$, and a kind of modified Gallagher Lemma for the exponential sums.
Comment: Selberg integral of $d_3$ exponent is improved to 6/5, applying conjectural exponent 1 for the modified Selberg integral of $d_3$
Databáze: arXiv