On the Selberg integral of the three-divisor function $d_3$
Autor: | Coppola, Giovanni |
---|---|
Rok vydání: | 2012 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We give a new non-trivial upper bound for the Selberg integral of the three-divisor function $d_3(n)$. Our method applies our recent conjecture together with Laporta, for the modified Selberg integral of $d_3(n)$, and a kind of modified Gallagher Lemma for the exponential sums. Comment: Selberg integral of $d_3$ exponent is improved to 6/5, applying conjectural exponent 1 for the modified Selberg integral of $d_3$ |
Databáze: | arXiv |
Externí odkaz: |