Outer Billiards, Digital Filters and Kicked Hamiltonians

Autor: Hughes, G. H.
Rok vydání: 2012
Předmět:
Druh dokumentu: Working Paper
Popis: In 1978 Jurgen Moser suggested the outer billiards map (Tangent map) as a discontinuous model of Hamiltonian dynamics. A decade earlier, J.B. Jackson and his colleagues at Bell Labs were trying to understand the source of self-sustaining oscillations in digital filters. Some of the discrete mappings used to describe these filters show a remarkable ability to 'shadow' the Tangent map when the polygon in question is regular. In this paper we describe a specific digital filter map (Df) that appears to have dynamics which are conjugate to the Tangent map for a regular N-gon with N even. When N is odd, there is evidence of another conjugacy between the Tangent map dynamics of N and the matching 2N-gon, so a case like N = 7 can be studied with the Df map in the context of N = 14. This provides a many-fold increase in efficiency, and also allows us to generalize the Tangent map to obtain 'step-k' versions - which have dynamics that are unexplored. We also present some related maps, including Chua and Lin's 3-dimensional version of Df, an Analog to Digital Converter from Orla Feely, a sawtooth version of the Standard Map by Peter Ashwin and various kicked harmonic oscillators. All of these seem to shadow the Tangent map in some form. Mathematica code is provided for all mappings both here and at DynamicsOfPolygons.org.
Comment: Revised Section 1 due to the results by the author in arxiv.org/abs/1311.6763
Databáze: arXiv