On complete constant mean curvature vertical multigraphs in E(\kappa,\tau)
Autor: | Manzano, José M., Rodríguez, M. Magdalena |
---|---|
Rok vydání: | 2012 |
Předmět: | |
Zdroj: | Journal of Geometric Analysis, 25 (2015), no. 1, 336-346 |
Druh dokumentu: | Working Paper |
DOI: | 10.1007/s12220-013-9431-8 |
Popis: | We prove that any complete surface with constant mean curvature in a homogeneous space E(\kappa,\tau) which is transversal to the vertical Killing vector field is, in fact, a vertical graph. As a consequence we get that any orientable, parabolic, complete, immersed surface with constant mean curvature H in E(\kappa,\tau) (different from a horizontal slice in S^2xR) is either a vertical cylinder or a vertical graph (in both cases, it must be 4H^2+\kappa\leq0). Comment: 11 pages, 2 figures |
Databáze: | arXiv |
Externí odkaz: |