Translating the Cantor set by a random

Autor: Dougherty, Randall, Lutz, Jack, Mauldin, R. Daniel, Teutsch, Jason
Rok vydání: 2012
Předmět:
Zdroj: Trans. Amer. Math. Soc. 366 (2014), 3027-3041
Druh dokumentu: Working Paper
DOI: 10.1090/S0002-9947-2014-05912-6
Popis: We determine the constructive dimension of points in random translates of the Cantor set. The Cantor set "cancels randomness" in the sense that some of its members, when added to Martin-Lof random reals, identify a point with lower constructive dimension than the random itself. In particular, we find the Hausdorff dimension of the set of points in a Cantor set translate with a given constructive dimension.
Databáze: arXiv