Autor: |
Dougherty, Randall, Lutz, Jack, Mauldin, R. Daniel, Teutsch, Jason |
Rok vydání: |
2012 |
Předmět: |
|
Zdroj: |
Trans. Amer. Math. Soc. 366 (2014), 3027-3041 |
Druh dokumentu: |
Working Paper |
DOI: |
10.1090/S0002-9947-2014-05912-6 |
Popis: |
We determine the constructive dimension of points in random translates of the Cantor set. The Cantor set "cancels randomness" in the sense that some of its members, when added to Martin-Lof random reals, identify a point with lower constructive dimension than the random itself. In particular, we find the Hausdorff dimension of the set of points in a Cantor set translate with a given constructive dimension. |
Databáze: |
arXiv |
Externí odkaz: |
|