Inverse spectral problems for Dirac operators with summable matrix-valued potentials

Autor: Puyda, D. V.
Rok vydání: 2012
Předmět:
Zdroj: Integr. Equ. Oper. Theory 74 (2012) 417-450
Druh dokumentu: Working Paper
DOI: 10.1007/s00020-012-2001-9
Popis: We consider the direct and inverse spectral problems for Dirac operators on $(0,1)$ with matrix-valued potentials whose entries belong to $L_p(0,1)$, $p\in[1,\infty)$. We give a complete description of the spectral data (eigenvalues and suitably introduced norming matrices) for the operators under consideration and suggest a method for reconstructing the potential from the corresponding spectral data.
Comment: 32 pages
Databáze: arXiv