A note on the switching adiabatic theorem

Autor: Elgart, Alexander, Hagedorn, George A.
Rok vydání: 2012
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1063/1.4748968
Popis: We derive a nearly optimal upper bound on the running time in the adiabatic theorem for a switching family of Hamiltonians. We assume the switching Hamiltonian is in the Gevrey class $G^\alpha$ as a function of time, and we show that the error in adiabatic approximation remains small for running times of order $g^{-2}\,|\ln\,g\,|^{6\alpha}$. Here $g$ denotes the minimal spectral gap between the eigenvalue(s) of interest and the rest of the spectrum of the instantaneous Hamiltonian.
Comment: 20 pages, no figures, to appear in JMP
Databáze: arXiv