The three dimensional Fueter equation and divergence free frames

Autor: Salamon, Dietmar A.
Rok vydání: 2012
Předmět:
Druh dokumentu: Working Paper
Popis: A divergence free frame on a closed three manifold is called regular if every solution of the linear Fueter equation is constant and is called singular otherwise. The set of singular divergence free frames is an analogue of the Maslov cycle. Regular divergence free frames satisfy an analogue of the Arnold conjecture for flat hyperkaehler target manifolds. The Seiberg-Witten equations can be viewed as gauged versions of the Fueter equation, and so can the Donaldson-Thomas equations on certain seven dimensional product manifolds.
Comment: Final version, 34 pages. Abhandlungen aus dem Mathematischen Seminar der Universitaet Hamburg
Databáze: arXiv