Modulus and Poincar\'e inequalities on non-self-similar Sierpinski carpets
Autor: | Mackay, John M., Tyson, Jeremy T., Wildrick, Kevin |
---|---|
Rok vydání: | 2012 |
Předmět: | |
Zdroj: | Geom. Funct. Anal. Volume 23, Number 3 (2013), 985-1034 |
Druh dokumentu: | Working Paper |
DOI: | 10.1007/s00039-013-0227-6 |
Popis: | A carpet is a metric space homeomorphic to the Sierpinski carpet. We characterize, within a certain class of examples, non-self-similar carpets supporting curve families of nontrivial modulus and supporting Poincar\'e inequalities. Our results yield new examples of compact doubling metric measure spaces supporting Poincar\'e inequalities: these examples have no manifold points, yet embed isometrically as subsets of Euclidean space. Comment: v1: 42 pages, 11 figures. v2: 42 pages, 10 figures. Improved exposition |
Databáze: | arXiv |
Externí odkaz: |