Modulus and Poincar\'e inequalities on non-self-similar Sierpinski carpets

Autor: Mackay, John M., Tyson, Jeremy T., Wildrick, Kevin
Rok vydání: 2012
Předmět:
Zdroj: Geom. Funct. Anal. Volume 23, Number 3 (2013), 985-1034
Druh dokumentu: Working Paper
DOI: 10.1007/s00039-013-0227-6
Popis: A carpet is a metric space homeomorphic to the Sierpinski carpet. We characterize, within a certain class of examples, non-self-similar carpets supporting curve families of nontrivial modulus and supporting Poincar\'e inequalities. Our results yield new examples of compact doubling metric measure spaces supporting Poincar\'e inequalities: these examples have no manifold points, yet embed isometrically as subsets of Euclidean space.
Comment: v1: 42 pages, 11 figures. v2: 42 pages, 10 figures. Improved exposition
Databáze: arXiv