Solar Energy Generation in Three Dimensions
Autor: | Bernardi, Marco, Ferralis, Nicola, Wan, Jin H., Villalon, Rachelle, Grossman, Jeffrey C. |
---|---|
Rok vydání: | 2011 |
Předmět: | |
Druh dokumentu: | Working Paper |
DOI: | 10.1039/c2ee21170j |
Popis: | We formulate, solve computationally and study experimentally the problem of collecting solar energy in three dimensions(1-5). We demonstrate that absorbers and reflectors can be combined in the absence of sun tracking to build three-dimensional photovoltaic (3DPV) structures that can generate measured energy densities (energy per base area, kWh/m2) higher by a factor of 2-20 than stationary flat PV panels, versus an increase by a factor of 1.3-1.8 achieved with a flat panel using dual-axis sun tracking(6). The increased energy density is countered by a higher solar cell area per generated energy for 3DPV compared to flat panel design (by a factor of 1.5-4 in our conditions), but accompanied by a vast range of improvements. 3DPV structures are steadier sources of solar energy generation at all latitudes: they can double the number of peak power generation hours and dramatically reduce the seasonal, latitude and weather variations of solar energy generation compared to a flat panel design. Self-supporting 3D shapes can create new schemes for PV installation and the increased energy density can facilitate the use of cheaper thin film materials in area-limited applications. Our findings suggest that harnessing solar energy in three dimensions can open new avenues towards Terawatt-scale generation. Comment: 40 pages, 16 pages paper (3 figures), 24 pages supplementary information (7 figures). Energy and Environmental Science (2012, Published on-line) |
Databáze: | arXiv |
Externí odkaz: |