Distribution of cusp sections in the Hilbert modular orbifold

Autor: Arias, Samuel Estala
Rok vydání: 2011
Předmět:
Druh dokumentu: Working Paper
Popis: Let K be a number field, let M be the Hilbert modular orbifold of K, and let m(q) be the probability measure uniformly supported on the cusp cross sections of M at height q. We generalize a method of Zagier and show that m(q) distributes uniformly with respect to the normalized Haar measure m on M as q tends to zero, and relate the rate by which m(q) approaches m to the Riemann hypothesis for the Dedekind zeta function of K.
Comment: 21 pages
Databáze: arXiv