Distribution of cusp sections in the Hilbert modular orbifold
Autor: | Arias, Samuel Estala |
---|---|
Rok vydání: | 2011 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let K be a number field, let M be the Hilbert modular orbifold of K, and let m(q) be the probability measure uniformly supported on the cusp cross sections of M at height q. We generalize a method of Zagier and show that m(q) distributes uniformly with respect to the normalized Haar measure m on M as q tends to zero, and relate the rate by which m(q) approaches m to the Riemann hypothesis for the Dedekind zeta function of K. Comment: 21 pages |
Databáze: | arXiv |
Externí odkaz: |