The mixed problem in Lipschitz domains with general decompositions of the boundary
Autor: | Taylor, Justin L., Ott, Katharine A., Brown, Russell M. |
---|---|
Rok vydání: | 2011 |
Předmět: | |
Zdroj: | Trans. Amer. Math. Soc., 365 (2013), 2895-2930 |
Druh dokumentu: | Working Paper |
DOI: | 10.1090/S0002-9947-2012-05711-4 |
Popis: | This paper continues the study of the mixed problem for the Laplacian. We consider a bounded Lipschitz domain $\Omega\subset \reals^n$, $n\geq2$, with boundary that is decomposed as $\partial\Omega=D\cup N$, $D$ and $N$ disjoint. We let $\Lambda$ denote the boundary of $D$ (relative to $\partial\Omega$) and impose conditions on the dimension and shape of $\Lambda$ and the sets $N$ and $D$. Under these geometric criteria, we show that there exists $p_0>1$ depending on the domain $\Omega$ such that for $p$ in the interval $(1,p_0)$, the mixed problem with Neumann data in the space $L^p(N)$ and Dirichlet data in the Sobolev space $W^ {1,p}(D) $ has a unique solution with the non-tangential maximal function of the gradient of the solution in $L^p(\partial\Omega)$. We also obtain results for $p=1$ when the Dirichlet and Neumann data comes from Hardy spaces, and a result when the boundary data comes from weighted Sobolev spaces. Comment: 36 pages |
Databáze: | arXiv |
Externí odkaz: |