Autor: |
Kadu, Ganesh S., Puthenpurakal, Tony J. |
Rok vydání: |
2011 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
Popis: |
Let A be a Cohen-Macaulay local ring of dimension d and I an ideal in A. Let M be a finitely generated maximal Cohen-Macaulay A-module. Let I be a locally complete intersection ideal of analytic deviation one and reduction number at most one. We prove that the polynomial given by $length(Tor^{A}_{1}(M,A/I^{n+1}))$ either has degree d-1 or $F_I(M) $ is a free$F(I)-$$module. |
Databáze: |
arXiv |
Externí odkaz: |
|