The 0-th stable A^1-homotopy sheaf and quadratic zero cycles
Autor: | Asok, Aravind, Haesemeyer, Christian |
---|---|
Rok vydání: | 2011 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We study the 0-th stable A^1-homotopy sheaf of a smooth proper variety over a field k assumed to be infinite, perfect and to have characteristic unequal to 2. We provide an explicit description of this sheaf in terms of the theory of (twisted) Chow-Witt groups as defined by Barge-Morel and developed by Fasel. We study the notion of rational point up to stable A^1-homotopy, defined in terms of the stable A^1-homotopy sheaf of groups mentioned above. We show that, for a smooth proper k-variety X, existence of a rational point up to stable A^1-homotopy is equivalent to existence of a 0-cycle of degree 1. Comment: 45 pages; preliminary version, comments welcome! |
Databáze: | arXiv |
Externí odkaz: |