Degree-equipartite graphs
Autor: | Bibak, Khodakhast, Haghighi, Mohammad Hassan Shirdareh |
---|---|
Rok vydání: | 2011 |
Předmět: | |
Zdroj: | Discrete Math., 311 (2011) 888--891 |
Druh dokumentu: | Working Paper |
DOI: | 10.1016/j.disc.2011.02.018 |
Popis: | A graph $G$ of order $2n$ is called degree-equipartite if for every $n$-element set $A\subseteq V(G)$, the degree sequences of the induced subgraphs $G[A]$ and $G[V(G)\setminus A]$ are the same. In this paper, we characterize all degree-equipartite graphs. This answers Problem 1 in the paper by Gr\"{u}nbaum et al [B. Gr\"{u}nbaum, T. Kaiser, D. Kr\'{a}l, and M. Rosenfeld, Equipartite graphs, {\it Israel J. Math.} {\bf 168} (2008), 431-444]. Comment: 6 pages |
Databáze: | arXiv |
Externí odkaz: |