Using Tropical Degenerations For Proving The Nonexistence Of Certain Nets
Autor: | Gunturkun, Mustafa Hakan, Kisisel, Ali Ulas Ozgur |
---|---|
Rok vydání: | 2011 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | A net is a special configuration of lines and points in the projective plane. There are certain restrictions on the number of its lines and points. We proved that there cannot be any (4,4) nets in $\mathbb{C}P^2$. In order to show this, we use tropical algebraic geometry. We tropicalize the hypothetical net and show that there cannot be such a configuration in $\mathbb{C}P^2$. Comment: 30 pages |
Databáze: | arXiv |
Externí odkaz: |