Complexity for Modules Over the Classical Lie Superalgebra gl(m|n)

Autor: Boe, Brian D., Kujawa, Jonathan R., Nakano, Daniel K.
Rok vydání: 2011
Předmět:
Zdroj: Compositio Math. 148 (2012) 1561-1592
Druh dokumentu: Working Paper
DOI: 10.1112/S0010437X12000231
Popis: Let $\mathfrak{g}=\mathfrak{g}_{\bar{0}}\oplus \mathfrak{g}_{\bar{1}}$ be a classical Lie superalgebra and $\mathcal{F}$ be the category of finite dimensional $\mathfrak{g}$-supermodules which are completely reducible over the reductive Lie algebra $\mathfrak{g}_{\bar{0}}$. In an earlier paper the authors demonstrated that for any module $M$ in $\mathcal{F}$ the rate of growth of the minimal projective resolution (i.e., the complexity of $M$) is bounded by the dimension of $\mathfrak{g}_{\bar{1}}$. In this paper we compute the complexity of the simple modules and the Kac modules for the Lie superalgebra $\mathfrak{gl}(m|n)$. In both cases we show that the complexity is related to the atypicality of the block containing the module.
Comment: 32 pages
Databáze: arXiv