Autor: |
Azizov, Tomas Ya., Denisov, Mikhail, Philipp, Friedrich |
Rok vydání: |
2011 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
Popis: |
Given two possibly unbounded selfadjoint operators A and G such that the resolvent sets of AG and GA are non-empty, it is shown that the operator AG has a spectral function on IR with singularities if there exists a non-zero polynomial p such that the symmetric operator Gp(AG) is non-negative. This result generalizes a well-known theorem for definitizable operators in Krein spaces. |
Databáze: |
arXiv |
Externí odkaz: |
|