The energy functional on the Virasoro-Bott group with the $L^2$-metric has no local minima

Autor: Bruveris, Martins
Rok vydání: 2011
Předmět:
Zdroj: Ann. Glob. Anal. Geom., 41(4), 461-472, 2012
Druh dokumentu: Working Paper
DOI: 10.1007/s10455-012-9350-0
Popis: The geodesic equation for the right invariant $L^2$-metric (which is a weak Riemannian metric) on each Virasoro-Bott group is equivalent to the KdV-equation. We prove that the corresponding energy functional, when restricted to paths with fixed endpoints, has no local minima. In particular solutions of KdV don't define locally length-minimizing paths.
Comment: 12 pages, revised version
Databáze: arXiv