The energy functional on the Virasoro-Bott group with the $L^2$-metric has no local minima
Autor: | Bruveris, Martins |
---|---|
Rok vydání: | 2011 |
Předmět: | |
Zdroj: | Ann. Glob. Anal. Geom., 41(4), 461-472, 2012 |
Druh dokumentu: | Working Paper |
DOI: | 10.1007/s10455-012-9350-0 |
Popis: | The geodesic equation for the right invariant $L^2$-metric (which is a weak Riemannian metric) on each Virasoro-Bott group is equivalent to the KdV-equation. We prove that the corresponding energy functional, when restricted to paths with fixed endpoints, has no local minima. In particular solutions of KdV don't define locally length-minimizing paths. Comment: 12 pages, revised version |
Databáze: | arXiv |
Externí odkaz: |