$L_{p}[0,1] \setminus \bigcup\limits_{q>p} L_{q}[0,1]$ is spaceable for every $p>0$
Autor: | Botelho, G., Fávaro, V. V., Pellegrino, D., Seoane-Sepúlveda, J. B. |
---|---|
Rok vydání: | 2011 |
Předmět: | |
Zdroj: | Linear Algebra and its Applications 436 (2012) 2963-2965 |
Druh dokumentu: | Working Paper |
Popis: | In this short note we prove the result stated in the title; that is, for every $p>0$ there exists an infinite dimensional closed linear subspace of $L_{p}[0,1]$ every nonzero element of which does not belong to $\bigcup\limits_{q>p} L_{q}[0,1]$. This answers in the positive a question raised in 2010 by R. M. Aron on the spaceability of the above sets (for both, the Banach and quasi-Banach cases). We also complete some recent results from \cite{BDFP} for subsets of sequence spaces. Comment: 3 pages |
Databáze: | arXiv |
Externí odkaz: |