$L_{p}[0,1] \setminus \bigcup\limits_{q>p} L_{q}[0,1]$ is spaceable for every $p>0$

Autor: Botelho, G., Fávaro, V. V., Pellegrino, D., Seoane-Sepúlveda, J. B.
Rok vydání: 2011
Předmět:
Zdroj: Linear Algebra and its Applications 436 (2012) 2963-2965
Druh dokumentu: Working Paper
Popis: In this short note we prove the result stated in the title; that is, for every $p>0$ there exists an infinite dimensional closed linear subspace of $L_{p}[0,1]$ every nonzero element of which does not belong to $\bigcup\limits_{q>p} L_{q}[0,1]$. This answers in the positive a question raised in 2010 by R. M. Aron on the spaceability of the above sets (for both, the Banach and quasi-Banach cases). We also complete some recent results from \cite{BDFP} for subsets of sequence spaces.
Comment: 3 pages
Databáze: arXiv