General Leznov-Savelev solutions for Pohlmeyer reduced AdS$_5$ minimal surfaces
Autor: | Burrington, Benjamin A. |
---|---|
Rok vydání: | 2011 |
Předmět: | |
Zdroj: | JHEP 1109:002,2011 |
Druh dokumentu: | Working Paper |
DOI: | 10.1007/JHEP09(2011)002 |
Popis: | We consider the Pohlmeyer reduced sigma model describing AdS$_5$ minimal surfaces. We show that, similar to the affine Toda models, there exists a conformal extension to this model which admits a Lax formulation. The Lax connection is shown to be valued in a ${\mathbb Z}_4$-invariant subalgebra of the affine Lie algebra $\widehat{su(4)}$. Using this, we perform a modified version of a Laznov-Savelev analysis, which allows us to write formal expressions for the general solutions for the Pohlmeyer reduced AdS$_5$ theory. This analysis relies on the a certain decomposition for the exponentiated algebra elements. Comment: 29 pages + 7 pages appendices |
Databáze: | arXiv |
Externí odkaz: |