Cauchy-Riemann inequalities on 2-spheres of $\mathbb{R}^7$
Autor: | Salavessa, Isabel M. C. |
---|---|
Rok vydání: | 2011 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We prove that an integral Cauchy-Riemann inequality holds for any pair of smooth functions $(f,h)$ on the 2-sphere $\mathbb{S}^2$, and equality holds iff $f$ and $h$ are related $\lambda_1$-eigenfunctions. We extend such inequality to 4-tuples of functions, only valid on the $L^2$-orthogonal complement of a suitable nonzero finite dimensional space of functions. As a consequence we prove that 2-spheres are not $\Omega$-stable surfaces with parallel mean curvature in $\mathbb{R}^7$ for the associative calibration $\Omega$. Comment: 24 pages. LaTex2e V2: we correct some minor misprints. Remove a nonsense sentence in corollary 1.1, and correct a reference |
Databáze: | arXiv |
Externí odkaz: |