A Herbrand-Ribet theorem for function fields
Autor: | Taelman, Lenny |
---|---|
Rok vydání: | 2011 |
Předmět: | |
Druh dokumentu: | Working Paper |
DOI: | 10.1007/s00222-011-0346-3 |
Popis: | We prove a function field analogue of the Herbrand-Ribet theorem on cyclotomic number fields. The Herbrand-Ribet theorem can be interpreted as a result about cohomology with $\mu_p$-coefficients over the splitting field of $\mu_p$, and in our analogue both occurrences of $\mu_p$ are replaced with the $\mathfrak{p}$-torsion scheme of the Carlitz module for a prime $\mathfrak{p}$ in $\F_q[t]$. Comment: to appear in Inventiones Mathematicae |
Databáze: | arXiv |
Externí odkaz: |