Haloes gone MAD: The Halo-Finder Comparison Project
Autor: | Knebe, Alexander, Knollmann, Steffen R., Muldrew, Stuart I., Pearce, Frazer R., Aragon-Calvo, Miguel Angel, Ascasibar, Yago, Behroozi, Peter S., Ceverino, Daniel, Colombi, Stephane, Diemand, Juerg, Dolag, Klaus, Falck, Bridget L., Fasel, Patricia, Gardner, Jeff, Gottloeber, Stefan, Hsu, Chung-Hsing, Iannuzzi, Francesca, Klypin, Anatoly, Lukic, Zarija, Maciejewski, Michal, McBride, Cameron, Neyrinck, Mark C., Planelles, Susana, Potter, Doug, Quilis, Vicent, Rasera, Yann, Read, Justin I., Ricker, Paul M., Roy, Fabrice, Springel, Volker, Stadel, Joachim, Stinson, Greg, Sutter, P. M., Turchaninov, Victor, Tweed, Dylan, Yepes, Gustavo, Zemp, Marcel |
---|---|
Rok vydání: | 2011 |
Předmět: | |
Druh dokumentu: | Working Paper |
DOI: | 10.1111/j.1365-2966.2011.18858.x |
Popis: | [abridged] We present a detailed comparison of fundamental dark matter halo properties retrieved by a substantial number of different halo finders. These codes span a wide range of techniques including friends-of-friends (FOF), spherical-overdensity (SO) and phase-space based algorithms. We further introduce a robust (and publicly available) suite of test scenarios that allows halo finder developers to compare the performance of their codes against those presented here. This set includes mock haloes containing various levels and distributions of substructure at a range of resolutions as well as a cosmological simulation of the large-scale structure of the universe. All the halo finding codes tested could successfully recover the spatial location of our mock haloes. They further returned lists of particles (potentially) belonging to the object that led to coinciding values for the maximum of the circular velocity profile and the radius where it is reached. All the finders based in configuration space struggled to recover substructure that was located close to the centre of the host halo and the radial dependence of the mass recovered varies from finder to finder. Those finders based in phase space could resolve central substructure although they found difficulties in accurately recovering its properties. Via a resolution study we found that most of the finders could not reliably recover substructure containing fewer than 30-40 particles. However, also here the phase space finders excelled by resolving substructure down to 10-20 particles. By comparing the halo finders using a high resolution cosmological volume we found that they agree remarkably well on fundamental properties of astrophysical significance (e.g. mass, position, velocity, and peak of the rotation curve). Comment: 27 interesting pages, 20 beautiful figures, and 4 informative tables accepted for publication in MNRAS. The high-resolution version of the paper as well as all the test cases and analysis can be found at the web site http://popia.ft.uam.es/HaloesGoingMAD |
Databáze: | arXiv |
Externí odkaz: |