Some extensions of Alon's Nullstellensatz
Autor: | Kós, Géza, Mészáros, Tamás, Rónyai, Lajos |
---|---|
Rok vydání: | 2011 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Alon's combinatorial Nullstellensatz, and in particular the resulting nonvanishing criterion is one of the most powerful algebraic tools in combinatorics, with many important applications. In this paper we extend the nonvanishing theorem in two directions. We prove a version allowing multiple points. Also, we establish a variant which is valid over arbitrary commutative rings, not merely over subrings of fields. As an application, we prove extensions of the theorem of Alon and F\"uredi on hyperplane coverings of discrete cubes. Comment: Inital submission: Thu, 24 Mar 2011 |
Databáze: | arXiv |
Externí odkaz: |