Quantum chaos in one dimension?
Autor: | Ujfalusi, Laszlo, Varga, Imre, Schumayer, Daniel |
---|---|
Rok vydání: | 2011 |
Předmět: | |
Zdroj: | Phys. Rev. E 84, 016230 (2011) |
Druh dokumentu: | Working Paper |
DOI: | 10.1103/PhysRevE.84.016230 |
Popis: | In this work we investigate the inverse of the celebrated Bohigas-Giannoni-Schmit conjecture. Using two inversion methods we compute a one-dimensional potential whose lowest N eigenvalues obey random matrix statistics. Our numerical results indicate that in the asymptotic limit, N->infinity, the solution is nowhere differentiable and most probably nowhere continuous. Thus such a counterexample does not exist. Comment: 7 pages, 10 figures, minor correction, references extended |
Databáze: | arXiv |
Externí odkaz: |