Quantum chaos in one dimension?

Autor: Ujfalusi, Laszlo, Varga, Imre, Schumayer, Daniel
Rok vydání: 2011
Předmět:
Zdroj: Phys. Rev. E 84, 016230 (2011)
Druh dokumentu: Working Paper
DOI: 10.1103/PhysRevE.84.016230
Popis: In this work we investigate the inverse of the celebrated Bohigas-Giannoni-Schmit conjecture. Using two inversion methods we compute a one-dimensional potential whose lowest N eigenvalues obey random matrix statistics. Our numerical results indicate that in the asymptotic limit, N->infinity, the solution is nowhere differentiable and most probably nowhere continuous. Thus such a counterexample does not exist.
Comment: 7 pages, 10 figures, minor correction, references extended
Databáze: arXiv