Generalising the logistic map through the $q$-product
Autor: | Pessoa, Robson W. S., Borges, Ernesto P. |
---|---|
Rok vydání: | 2011 |
Předmět: | |
Zdroj: | J. Phys.: Conference Series 285, 012042 (2011) |
Druh dokumentu: | Working Paper |
DOI: | 10.1088/1742-6596/285/1/012042 |
Popis: | We investigate a generalisation of the logistic map as $ x_{n+1}=1-ax_{n}\otimes_{q_{map}} x_{n}$ ($-1 \le x_{n} \le 1$, $01$ at the edge of chaos, particularly at the first critical point $a_c$, that depends on the value of $q_{map}$. Bifurcation diagrams, sensitivity to initial conditions, fractal dimension and rate of entropy growth are evaluated at $a_c(q_{map})$, and connections with nonextensive statistical mechanics are explored. Comment: 12 pages, 23 figures, Dynamics Days South America. To be published in Journal of Physics: Conference Series (JPCS - IOP) |
Databáze: | arXiv |
Externí odkaz: |