Dynamical aspects of inextensible chains
Autor: | Ferrari, Franco, Pyrka, Maciej |
---|---|
Rok vydání: | 2011 |
Předmět: | |
Druh dokumentu: | Working Paper |
DOI: | 10.1142/S0217979211102204 |
Popis: | In the present work the dynamics of a continuous inextensible chain is studied. The chain is regarded as a system of small particles subjected to constraints on their reciprocal distances. It is proposed a treatment of systems of this kind based on a set Langevin equations in which the noise is characterized by a non-gaussian probability distribution. The method is explained in the case of a freely hinged chain. In particular, the generating functional of the correlation functions of the relevant degrees of freedom which describe the conformations of this chain is derived. It is shown that in the continuous limit this generating functional coincides with a model of an inextensible chain previously discussed by one of the authors of this work. Next, the approach developed here is applied to a inextensible chain, called the freely jointed bar chain, in which the basic units are small extended objects. The generating functional of the freely jointed bar chain is constructed. It is shown that it differs profoundly from that of the freely hinged chain. Despite the differences, it is verified that in the continuous limit both generating functionals coincide as it is expected. Comment: 15 pages, LaTeX 2e + various packages, 3 figures. The title has been changed and three references have been added. A large part of the manuscript has been rewritten to improve readability. Chapter 4 has been added. It contains the construction of the generating functional without the shish-kebab approximation and a new derivation of the continuous limit of the freely jointed bar chain |
Databáze: | arXiv |
Externí odkaz: |