Time-optimal reconstruction of Riemannian manifold via boundary electromagnetic measurements
Autor: | Belishev, M. I., Demchenko, M. N. |
---|---|
Rok vydání: | 2011 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | A dynamical Maxwell system is \begin{align*} & e_t={\rm curl\,} h, \quad h_t=-{\rm curl\,} e &&{\rm in}\,\,\Omega \times (0,T) & e|_{t=0}=0,\,\,\,\,h|_{t=0}=0 &&{\rm in}\,\,\Omega & e_\theta =f &&{\rm in}\,\,\, \partial\Omega \times [0,T] \end{align*} where $\Omega$ is a smooth compact oriented $3$-dimensional Riemannian manifold with boundary, $(\,\cdot\,)_\theta$ is a tangent component of a vector at the boundary, $e=e^f(x,t)$ and $h=h^f(x,t)$ are the electric and magnetic components of the solution. With the system one associates a response operator $R^T: f \mapsto -\nu \wedge h^f|_{\partial\Omega \times (0,T)}$, where $\nu$ is an outward normal to $\partial\Omega$. The time-optimal setup of the inverse problem, which is relevant to the finiteness of the wave speed propagation, is: given $R^{2T}$ to recover the part $\Omega^T:=\{x\in \Omega\,|\,{\rm dist\,}(x,\partial \Omega) Comment: 24 pages, 5 figures |
Databáze: | arXiv |
Externí odkaz: |